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Abstract— In this paper, a predictive control based approach is

proposed for a networked control system containing a nonlinear

input process. The approach uses a two-step predictive controller

to deal with the input nonlinearity and a delay and dropout

compensation scheme to compensate for the communication

constraints in a networked control environment. Theoretical

results are presented for the closed-loop stability of the system.

Simulation examples illustrating the validity of the approach are

also presented.
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I. INTRODUCTION

The research on “Networked Control Systems” (NCSs) has
been an emerging trend in recent years [1]–[3]. The limits
to the performance of control systems in a networked con-
trol environment are caused primarily by networked-induced
delays and data packet dropout [4]. These communication
constraints can mean in NCSs that the control signal for the
plant is delayed even unavailable, which results in an open
loop. The desire to obtain a better performance than that
resulting from holding the last available control signal or using
zero control during open loop intervals in NCSs, has led to a
model based control architecture [5] and to a predictive control
based control architecture [6]–[9]. The key idea of the model
based approach is that the knowledge of the plant dynamics is
used to reduce the usage of the network, while in the predictive
control based approach proposed in [7], the plant dynamics
is further used to produce future control signals to actively
compensate for the random network-induced delay in the
forward channel actively with the use of a corresponding time
delay compensator at the actuator side. A better performance
can be expected since the predictive control based approach
takes greater advantage of the knowledge available.

In this paper, following the predictive control based ap-
proach in [7], we extend its application to a NCS with a
nonlinear input process and random network-induced delays in
both forward and backward channels and data packet dropout

in the forward channel. Using the two-step design approach
[10], we first apply the predictive control method to the linear
part of the system considered in this paper to generate the in-
termediate control predictions using delayed sensing data and
previous control information. This process is distinct from [7]
in that only the available previous information is used to make
the predictions. The real control predictions for the system are
then obtained from the nonlinear input relationship assuming
the inverse of the static nonlinear function can be calculated
numerically. In order to compensate for the network-induced
delays in both channels and data packet dropout as well, a
Delay and Dropout Compensation Scheme (DDCS) is de-
signed, which consists of two components, a matrix selector
at the controller side to compensate for the network-induced
delay in the backward channel and a delay compensator
at the actuator side to compensate for the network-induced
delay and data packet dropout in the forward channel (see
Fig.1 for the whole structure). The implementation of DDCS
makes the predictive control based approach work well in
a network-based environment. The stability theorem of the
closed loop system is obtained by placing a sector constraint
on the nonlinearity due to the inaccuracy of calculating the
real control predictions. Simulations are also done to illustrate
the validity of the approach.

The remainder of this paper is organized as follows. The
design of the proposed approach is presented in Section 2.
Then the theoretical results for the system stability and the
simulation results are presented in Section 3 and Section 4,
respectively. The paper gives the conclusions in Section 5.

II. DESIGN OF NETWORKED PREDICTIVE CONTROL
SYSTEM WITH INPUT NONLINEARITY

The following Single-Input-Single-Output (SISO) system S
with a nonlinear input process is considered in this paper,

S :

8
><

>:

x(k + 1) = Ax(k) + bv(k) (1a)
y(k) = cx(k) (1b)
v(k) = f(u(k)) (1c)
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where x 2 Rn, u, v, y 2 R, and f(·) : R ! R is a memoryless
static nonlinear function.

In this section, we present first the design details of the
two-step predictive control approach to system S and then the
design of DDCS to compensate for the network-induced delays
and data packet dropout when such a system is implemented
in a networked control environment.

A. Design of the two-step predictive control approach

The key idea of the two-step predictive control approach is
to design an intermediate control signal v(k) of the linear
part of system S (equations (1a) and (1b)) with a linear
predictive control method (A Linear Generalized Predictive
Control (LGPC) method is adopted in this paper) first, and
then obtain the real control signal u(k) for system S from the
nonlinear relationship v(k) = f(u(k)) (see [9], [10] for its
applications to a Hammerstein model). The design details of
the two steps in a networked control environment are presented
respectively as follows.

1) Design of LGPC: In LGPC, a quadratic objective func-
tion is normally adopted, represented by:

J(N1, N2, Nu) =

N2X

j=N1

qj(ŷ(k + j|k ° øsc,k)° !(k + j))2

+

NuX

j=1

rj¢v2
(k + j ° 1) (2)

where N1 and N2 are the minimum and maximum prediction
horizons, Nu is the control horizon, qj , N1 ∑ j ∑ N2 and
rj , 1 ∑ j ∑ Nu are weighting factors, !(k+j), j = N1, ..., N2

are the set points, ¢v(k) = v(k) ° v(k ° 1) is the control
increment and ŷ(k + j|k ° øsc,k), j = N1, ..., N2 are the
forward predictions of the system outputs, which are obtained
on data up to time k ° øsc,k and will be calculated in detail
later, where øsc,k is the network-induced delay in the backward
channel at time k.

Let x̄(k) = [xT
(k) v(k ° 1)]

T , then system S can be
represented by S0,

S0 :

Ω
x̄(k + 1) =

¯Ax̄(k) +

¯b¢v(k) (3a)
y(k) = c̄x̄(k) (3b)

where ¯A =

µ
A b
0 1

∂
, ¯b =

µ
b
1

∂
, c̄ =

°
c 0

¢
. Thus the

j0 step forward output prediction at time k0 is

ŷ(k0 + j0|k0) = c̄ ¯Aj0 x̄(k0) +

j0°1X

l0=0

c̄ ¯Aj0°l0°1
¯b¢v(k0 + l0)

Let j0 = j + øsc,k, k0 = k ° øsc,k, l0 = l + øsc,k, then the
forward output predictions at time k based on the information
of the state on time k ° øsc,k and control signals from time
k ° øsc,k ° 1 is

ŷ(k + j|k ° øsc,k) = c̄ ¯Aj+øsc,k x̄(k ° øsc,k)

+

j°1X

l=°øsc,k

c̄ ¯Aj°l°1
¯b¢v(k + l) (4)

In [7], the previous control signals v(k°1), ..., v(k°øsc,k)

are used to calculate the predictive control sequence at time
k. However, this information is actually not available for
the controller in practice due to the random network-induced
delay in the forward channel. As will be discussed further in
Section II. B, in a networked predictive control environment,
a sequence of future control signals is packed to send to the
actuator, and the actuator only picks out one from the sequence
according to the specific time delay in the forward channel.
Therefore the controller does not know the real control signal
adopted by the actuator unless it receives the information
about the previous control signals applied to the actuator.
Only in such a special case, with no delay in the forward
channel, the previous control signals are all known by the
controller immediately. Therefore, in this paper, we develop
a new method to deal with this problem, in which only the
control and output information before time k ° øsc,k is used
to generate the predictive control sequence, by including the
control sequence from time k ° øsc,k to k ° 1 as part of the
predictive control sequence.

Let ˆY (k|k ° øsc,k) = [ŷ(k + N1|k ° øsc,k) · · · ŷ(k +

N2|k ° øsc,k)]

T , ¢V 0
(k|k ° øsc,k) = [¢v(k ° øsc,k|k °

øsc,k) · · · ¢v(k + Nu ° 1|k ° øsc,k)]

T , then

ˆY (k|k° øsc,k) = Eøsc,k x̄(k° øsc,k)+Føsc,k¢V 0
(k|k° øsc,k)

(5)
where Føsc,k is a (N2 ° N1 + 1) £ (Nu + øsc,k) ma-
trix with the non-null entries defined by (Føsc,k)ij =

c̄ ¯AN1+øsc,k+i°j°1
¯b, j ° i ∑ N1 + øsc,k ° 1, and Eøsc,k =

[(c̄ ¯AN1+øsc,k
)

T
(c̄ ¯AN1+øsc,k+1

)

T · · · (c̄ ¯AN2+øsc,k
)

T
]

T . Note
here that Eøsc,k and Føsc,k vary with different øsc,ks.

Let $k = [!(k + N1) · · · !(k + N2)]
T , then the optimal

predictive control increments from k to k + Nu ° 1 can be
calculated by letting @J(·)/@¢V 0

= 0,

¢V (k|k ° øsc,k) = Møsc,k($k ° Eøsc,k x̄(k ° øsc,k)) (6)

where ¢V (k|k°øsc,k) = [¢v(k|k°øsc,k) · · · ¢v(k+Nu°
1|k°øsc,k)]

T , Møsc,k = Høsc,k(FT
øsc,k

QFøsc,k +R)

°1FT
øsc,k

Q,
Q, R are diagonal matrices with Qi,i = qi, Ri,i = ri

respectively and Høsc,k = [0Nu£øsc,k INu£Nu ], INu£Nu is
the identity matrix with rank Nu.

Remark 1 Normally, the minimum prediction horizon can
be set as 1. Rewrite the maximum prediction horizon N2

as Np. The following constraint between Nu and Np needs
to be always held in order to implement the LGPC method
successfully,

Nu ∑ Np (7)

2) The nonlinear input process: If the nonlinear function
f(·) is invertible then its inverses f°1

(·) exists such that

¢u(k) = f°1
(¢v(k)) (8)

Thus, at every time instant k, the intermediate control
increments ¢v(k), k = 1, 2, · · · , Nu can be obtained from (6),
and then the real control increments ¢u(k), k = 1, 2, · · · , Nu

can be calculated from (8) thus enabling the control law to be
derived for system S0.
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If ¢u(k) can be calculated accurately using (8), thus
enabling the function f°1

(·) to be exactly known, then the
system with compensation for the nonlinear input process is
equivalent to LGPC and the system is stable if and only if
the linear part of system S with LGPC is stable. However,
in practice, it is usually impossible to calculate u(k) that
accurately. This inaccuracy introduces to the LGPC a nonlinear
disturbance, which makes the stability analysis difficult.

Denote the real inverse of f(·) by ˆf°1
(·) and for simplicity

of notation, let ˆ~f°1
(·) : RNu ! RNu with ˆ~f°1

(¢V (k|k °
øsc,k)) = [

ˆf°1
(¢v(k|k°øsc,k)) · · · ˆf°1

(¢v(k+Nu°1|k°
øsc,k))]

T . Then from the discussion above, the real predictive
control increment sequence for system S can be represented
by

¢U(k|k ° øsc,k) =

ˆ~f°1
(¢V (k|k ° øsc,k) (9)

where ¢U(k|k ° øsc,k) = [¢u(k|k ° øsc,k) · · · ¢u(k +

Nu ° 1|k ° øsc,k)]

T .

B. Design of DDCS

To enable the two-step predictive control approach to work
appropriately in a networked control environment, a Delay and
Dropout Compensation Scheme (DDCS) is proposed in this
section.

The following assumptions are first made for the DDCS
design:

A1. Each data packet containing the sensing data is sent with
a time stamp to notify when it was sent from sensor
to controller. This enables the network-induced delay in
the backward channel for each data packet known to the
controller. This information is then used to calculate the
appropriate control predictions;

A2. At every time instant k, the control predictions
¢U(k|k ° øsc,k) are packed into one data packet with
time stamps k and øsc,k. These time stamps are to
notify the time when it was sent and also the network-
induced delay in the backward channel which the control
predictions were based on. The control sequence is
then sent to the actuator simultaneously thus enabling
the network-induced delays in both channels for each
control predictive sequence known to the actuator;

A3. The sum of the maximum network-induced delay in
the forward channel (noted by ø̄ca) and the maximum
number of continuous data packet dropout (noted by ¬̄)
is bounded by the control horizon, i.e.,

ø̄ca + ¬̄ ∑ Nu ° 1 (10)

Based on the assumptions above, the two components of
the DDCS, the matrix selector and the delay compensator,
which are to deal with the network-induced delay in the back-
ward channel and the network-induced delay and data packet
dropout in the forward channel respectively, are presented in
the following sections.

1) Compensation for the random network-induced delay

in the backward channel - a matrix selector: Note the fact
that the calculation complexity of the predictive control in-
crements (equation (6)) seriously depends on the network-
induced delay in the backward channel øsc since the matrices
Eøsc,k , Føsc,k ,Møsc,k ,Høsc,k vary with this delay at time k,
i.e., øsc,k. Thus for the online implementation, it is a great
burden for the controller to calculate the predictive control
increments if øsc varies over a large range. However, these
matrices, actually, can be calculated off line since all the
matrices are fixed for a given øsc. This advantage enables us
to calculate off line all the matrices with respect to the specific
øscs, store them in a device called the “matrix selector” and
just choose the appropriate ones from the matrix selector when
calculating online the predictive control increments, according
to the current value of the delay øsc,k, which is known to the
controller recalling assumption A1.

Let Esc = {E0, E1, · · · , Eø̄sc}, Fsc = {F0, F1, · · · , Fø̄sc},
Msc = {M0,M1, · · · ,Mø̄sc}, Hsc = {H0,H1, · · · ,Hø̄sc},
where ø̄sc is the upper bound of the network-induced delay
in the backward channel, then we have for any k (or øsc,k),
Eøsc,k 2 Esc, Føsc,k 2 Fsc, Møsc,k 2 Msc, Høsc,k 2 Hsc,
respectively. For a practical implementation, these matrices
are calculated off line and stored in the matrix selector for
online use.

2) Compensation for the random network-induced delay

and data packet dropout in the forward channel - a delay

compensator: As presented in assumption A2, the predictive
control increment sequence ¢U(k|k ° øsc,k) is sent to the
actuator all in one data packet. When a new sequence arrives
at the actuator side, it is compared with the one already
in the so called “delay compensator” according to the time
stamps (which notify the time when the sequences were sent
from the controller) and only the one with the latest time
stamp is stored. The delay compensator is specially designed
for the actuator and it can only store one control sequence
(data packet) at any time. For example, denote the sequence
arrives at the actuator side as ¢U(k1|k1° øsc,k1) with a time
stamp k1 and the one already in the delay compensator is
¢U(k2|k2 ° øsc,k2) with a time stamp k2. Then if k1 > k2,
¢U(k2|k2 ° øsc,k2) will be replaced by ¢U(k1|k1 ° øsc,k1);
otherwise ¢U(k1|k1 ° øsc,k1) will be simply discarded and
the delay compensator remains unchanged.

The comparison process is introduced at the actuator side
due to the fact that different data packets may experience
different delays in the forward channel, thereby producing a
situation where for example a data packet sent earlier from
the controller may arrive at the actuator later or may never
arrive in the case of data packet dropout. As a result of the
comparison process, the predictive control sequence stored in
the delay compensator is always the latest one available at any
specific time.

As for the actuator, it can be either time-driven or event-
driven. At every execution time instant1, the actuator picks out

1A fixed time interval between two successive time instants for time-driven
actuator, while variable for event-driven actuator since the execution time
instant is trigged by the event that a new predictive control sequence is stored
in the delay compensator and thus can be random.
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Fig. 1. The structure of networked predictive control system with input nonlinearity

the appropriate control increment signal which can compensate
for current network-induced delay in the forward channel
from the predictive control increment sequence in the delay
compensator and applies it to the plant. The method to choose
the appropriate control increment signal at a specific time will
be explained in detail in the next section. It is necessary to
point this out that the appropriate control increment is always
available using the delay compensator if assumption A3 holds.

The two-step predictive control approach with DDCS can
now be summarized by the following four steps:

S1. Calculation. The predictive controller calculates the
intermediate predictive control increment sequence
¢V (k|k ° øsc,k) through (6) with the use of the pro-
posed matrix selector and delayed information of states
and control signals. The predictive control increment
sequence ¢U(k|k° øsc,k) is then obtained by compen-
sating for the nonlinear input process using (9);

S2. Transmission. ¢U(k|k°øsc,k) is packed and sent to the
actuator simultaneously with time stamps k and øsc,k;

S3. Comparison. The delay compensator updates its infor-
mation according to the time stamps once a data packet
arrives;

S4. Execution. An appropriate control increment signal is
picked out from the control sequence in the delay
compensator and applied to the plant.

The structure of the predictive based approach with DDCS
(so called “Networked Predictive Control Systems”(NPCSs))
is illustrated in Fig.1.

III. STABILITY ANALYSIS

In this section, the closed loop formulation of such a
NPCS with a nonlinear input process is derived, and then
the stability theorem is obtained using switched system theory
under a sector constraint of the nonlinearity due to calculation
inaccuracy.

A. Closed loop system

Let ø§ca,k denote the network-induced delay in the forward
channel of the predictive control increment sequence, from
which the control signal is picked out by the actuator at time

instant k. The time when the sequence was sent from the
controller side can then be read from its time stamp as

k§ = k ° ø§ca,k = max

j
{j|¢U(j|j ° øsc,j) 2 °k} (11)

where °k is the set of the predictive control increment
sequences that are available during time interval (k ° 1, k]

at the actuator side, including not only the one in the delay
compensator but others that arrive at the actuator during this
interval (see Fig.2). From equations (9), (11), the control signal
adopted by the actuator at time k is obtained as

¢u(k) = dT
ø§

ca,k
¢U(k ° ø§ca,k|k ° ø§k ) (12)

where dø§
ca,k

is a Nu £ 1 matrix with all entries 0 except the
(ø§ca,k + 1)th is 1, ø§k is the RTT (Round Trip Time) with
respect to ø§ca,k, i.e., ø§k = ø§ca,k + ø§sc,k, and ø§sc,k = øsc,k§ .

From equations (6), (9) and noticing for any vector V

with an appropriate dimension, dT
ø§

ca,k

ˆ~f°1
(V ) =

ˆf°1
(dT

ø§
ca,k

V )

recalling the definition of ˆ~f°1
(·), thus we obtain (assume the

set point ! = 0 without loss of generality)

¢u(k) =dT
ø§

ca,k
¢U(k ° ø§ca,k|k ° ø§k )

=dT
ø§

ca,k

ˆ~f°1
(¢V (k ° ø§ca,k|k ° ø§k )

=

ˆf°1
(dT

ø§
ca,k

¢V (k ° ø§ca,k|k ° ø§k )

=

ˆf°1
(°K§

ø,kx̄(k ° ø§k )) (13)

where K§
ø,k = dT

ø§
ca,k

Møsc,kEøsc,k
2. The real control increment

for linear system (1a) and (1b) at time k can then be obtained
as

¢v(k) = f(¢u(k)) = f ± ˆf°1
(°K§

ø,kx̄(k ° ø§k )) (14)

where f ± ˆf°1
(·) = f(

ˆf°1
(·)) is the composite function of

f(·) and ˆf°1
(·).

Let X(k) = [x̄T
(k° ø̄) · · · x̄T

(k)]

T , w(k) = ¢v(k), then
the closed loop system can be represented by

S§ :

(
X(k + 1) =

eAX(k) +

ebw(k) (15a)
w(k) = f ± ˆf°1

(°K§
ø̄ ,kX(k)) (15b)

2Note that the value of K§
ø,k varies with the delays in both channels, and

thus it has (ø̄ca + 1)(ø̄sc + 1) different values in total.
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P l a n t 

C o n t r o l l e r 

S e n s o r 

Fig. 2. Time delays of the control signal adopted by the actuator at time k

where eb = [0n+1,1 · · · 0n+1,1
¯bT
n+1,1]

T , K§
ø̄ ,k is a 1£ (ø̄ +1)

block matrix with block size of 1 £ (n + 1) and all its
blocks 0 except the (ø̄ + 1 ° ø§k )th is K§

ø,k (the set of
all the possible K§

ø̄ ,k will be denoted by K), and eA =0

BBBBBBB@

0n+1 In+1

0n+1 In+1 0
.. . . . .

0 0n+1 In+1
¯A

1

CCCCCCCA

.

B. Stability Analysis

As has been pointed out in Section II.A.2), the compensa-
tion for the nonlinear input process using (8) is generally not
accurate, and this inaccuracy introduces to the linear part of the
system ((1a) and (1b)) a nonlinear disturbance, which appears
in the form of f ± ˆf°1

(·). Though generally f ± ˆf°1
(·) 6¥ 1,

it is reasonable to assume that the calculation error meets
some accuracy requirement to a certain extent, which results
in a sector constraint for the term f ± ˆf°1

(·), as described in
assumption A4 as follows.
A4. The nonlinearity due to the calculation inaccuracy is

supposed to satisfy a sector constraint, i.e., there exist
0 < " ∑ "̄ < 1, s.t.

"Æ ∑ f ± ˆf°1
(Æ) ∑ "̄Æ, 8Æ 2 R (16)

This constraint can be denoted by

f ± ˆf°1
(·) 2 [", "̄] (17)

Notice here that generally 0 < " ∑ 1 ∑ "̄ < 1.
Using assumption A4, we obtain that for any specific Æ 2 R,

there exists a real number "Æ, " ∑ "Æ ∑ "̄ such that f ±
ˆf°1

(Æ) = "ÆÆ, equation (15b) can thereby be rewritten as

w(k) =f ± ˆf°1
(°K§

ø̄ ,kX(k))

=° "kK§
ø̄ ,kX(k) (18)

where "k 2 [", "̄] represents the compensation for the specific
nonlinearity for the term K§

ø̄ ,kX(k) at time k.
Recalling equations (15a) and (18), the closed loop system

S§ can then be written as

X(k + 1) =

eAX(k) +

ebw(k)

=(

eA° "k
ebK§

ø̄ ,k)X(k)

=§("k,K§
ø̄ ,k)X(k) (19)

where the closed loop matrix §("k,K§
ø̄ ,k) =

eA°"k
ebK§

ø̄ ,k has
the form

§("k,K§
ø̄ ,k) =

0

BBBBBBB@

0n+1 In+1

0n+1 In+1 0
.. . . . .

0 0n+1 In+1

· · · °"k
¯bK§

ø,k · · · ¯A

1

CCCCCCCA

.

The position and value of the term °"k
¯bK§

ø,k depends on
the specific delays in the both channels at time k, i.e.,
(§("k,K§

ø̄ ,k))ø̄+1,j = °"k
¯bK§

ø,k, j = ø§k = 1, 2, · · · , ø̄ , and
(§("k,K§

ø̄ ,k))ø̄+1,ø̄+1 =

¯A° "k
¯bK§

ø,k, if ø§k = ø̄ + 1.
Theorem 1 The closed loop system S§ is stable if A4 holds

and there exists a positive definite solution P = PT > 0 for
the following 2(ø̄ca + 1)(ø̄sc + 1) LMIs

§

T
(",K§

ø̄ ,k)P§(",K§
ø̄ ,k)° P ∑ 0 (20a)

§

T
("̄,K§

ø̄ ,k)P§("̄,K§
ø̄ ,k)° P ∑ 0 (20b)

where K§
ø̄ ,k 2 K.

Proof. Let V (k) = XT
(k)PX(k) be a Lyapunov function

candidate, then the incremental V (k) for system S§ can be
obtained using equation (19)

¢V (k) =XT
(k)(§("k,K§

ø̄ ,k)

T P§("k,K§
ø̄ ,k)° P )X(k)

=XT
(k)(

eAT P eA° P ° "k
eAT PebK§

ø̄ ,k

° "kK§T
ø̄ ,k

ebT P eA + "2
kK§T

ø̄ ,k
ebT PebK§

ø̄ ,k)X(k) (21)
Def
=XT

(k)A ("k,K§
ø̄ ,k)X(k) (22)

where "k 2 [", "̄],K§
ø̄ ,k 2 K.

Notice that for any "k 2 [", "̄], there exists 0 ∑ ∏k ∑ 1 s.t.
"k = ∏k"+(1°∏k)"̄, and thus we obtain by substituting this
into (22)

A ("k,K§
ø̄ ,k) =∏kA (",K§

ø̄ ,k) + (1° ∏k)A ("̄,K§
ø̄ ,k)

° ∏k(1° ∏k)("° "̄)2K§T
ø̄ ,k

ebT PebK§
ø̄ ,k (23)

From equations (20a), (20b) and (22), A (",K§
ø̄ ,k) and

A ("̄,K§
ø̄ ,k) are semi-negative definite for all K§

ø̄ ,k 2 K.
Notice that P is symmetric positive definite, and then
K§T

ø̄ ,k
ebT PebK§

ø̄ ,k is semi-positive definite as a symmetric ma-
trix, thus enabling A ("k,K§

ø̄ ,k) to be semi-negative definite
for any "k 2 [", "̄] and K§

ø̄ ,k 2 K, which completes the proof.
Remark 2 It is necessary to point this out that according

to assumption A4 and Theorem 1, what is required for the
stability of the system is to satisfactorily meet the sector
constraint in equation (17), no matter how the inverse function
ˆf°1

(·) is calculated. It implies that the function f(·) does not
need to be theoretically invertible as long as its inverse can
be obtained by a numerical method and satisfies the sector
constraint. One can refer to [11] and the references therein for
more information of the calculation of ˆf°1

(·).
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IV. SIMULATION

In [7], the authors have shown the validity of the predictive
based approach for a linear plant with a random delay in the
forward channel and a constant delay in the backward channel
using simulations and a real test rig as well. In this section, a
second order plant model in discrete time as follows is adopted
to illustrate the validity of the proposed approach in this paper
for the system with a nonlinear input process and random
delays in both channels and data packet dropout in the forward
channel,

A =

µ
0.98 0.1
0 1

∂
, b =

µ
0.04

0.1

∂
, c =

°
1 0

¢
.

Other parameters of the simulation are chosen as ø̄ =

8, ø̄ca = 4, ø̄sc = 4, Nu = 8, Np = 10, " = 0.5, "̄ = 1.5, and
the initial state x0 = [°1° 1]

T . The delays in both channels
are set to vary randomly within their upper bounds.

The simulation result is illustrated in Fig.3, from which it
is seen that the closed loop stability of such a system can
be still guaranteed under certain conditions when a nonlinear
input process and random delays in both channels are present
in the system and compensated for by the proposed approach,
though the states vary over a larger range in such a case.
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Fig. 3. The validity of the compensation for the input nonlinear process

V. CONCLUSION

In this paper, a novel approach with the integration of the
two-step predictive control method and a delay and dropout
compensation scheme is proposed for a networked control
system containing a nonlinear input process. In the approach,
the predictive controller for the linear part of the system is first
designed using delayed sensing data, and the nonlinear input
can be viewed as a nonlinear disturbance after a compensation
scheme. The communication constraints considered in this
paper, i.e., random delays in both channels and data packet
dropout in the forward channel, are dealt with by the delay
and dropout compensation scheme, which consists of two
components configured at both the controller and actuator
sides. The stability theorem for the closed loop system is

obtained using switched system theory. Simulation work has
also been done to illustrate the validity of the approach.

REFERENCES

[1] G. C. Walsh, H. Ye, and L.G. Bushnell, “Stability analysis of networked
control systems,” in Proc. 1999 American Control Conference, vol. 4,
pp. 2876–2880, San Diego, CA., 1999.

[2] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked
control systems,” Control Eng. Practice, vol.11, no.10, pp.1099–1111,
2003.

[3] Y. Zheng, H. Fang, and H. O. Wang, “Takagicsugeno fuzzy-model-based
fault detection for networked control systems with markov delays,” IEEE

Trans. Syst. Man Cybern. Part B-Cybern., vol. 36, no.4, pp.924–929,
Aug. 2006.

[4] J. Baillieul and P. J. Antsaklis, “Control and communication challenges
in networked real-time systems,” Proc. IEEE, vol. 95, no.1, pp.9–27,
Jan. 2007.

[5] L. A. Montestruque and P. J. Antsaklis, “On the model based control
of networked systems,” Automatica, vol.39, pp. 837–1843, 2003.

[6] G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh, “A
moving horizon approach to networked control system design,” IEEE

Trans. Autom. Control, vol. 49, no.9, pp.1427–1445, Sept. 2004.
[7] G.P.Liu, J. X. Mu, D. Rees, and S. C. Chai, “Design and stability

analysis of networked control systems with random communication time
delay using the modified MPC,” Int. J. Control, vol.79, no.4, pp.288–
297, 2006.

[8] G.P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria of
networked predictive control systems with random network delay in the
feedback channel,” IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev.,
vol. 37, no.2, pp.173–184, Mar. 2007.

[9] Y.B.Zhao, G.P.Liu, and D.Rees, “Time delay compensation and stability
analysis of networked predictive control systems based on hammerstein
model,” In Proc. 2007 IEEE Int. Conf. Netowking, Sensing and Control,
London, UK, Apr. 2007, pp. 808–811.

[10] B. Ding and Y. Xi, “A two-step predictive control design for input
saturated Hammerstein systems,” Int. J. Robust Nonlinear Control, vol.
16, pp.353–367, 2006.

[11] Tao Gang and Kokotovic Petar V, Adaptive Control of Systems with

Actuator and Sensor Nonlinearities. New York : Wiley, 1996.



www.engineeringvillage.com
Detailed results: 1

Downloaded: 11/22/2017

Content provided by Engineering Village. Copyright 2017 Page 1 of 1

1. A predictive control-based approach to networked hammerstein systems: Design and
stability analysis
Accession number: 20082411315838
Authors: Zhao, Yun-Bo (1); Liu, Guo-Ping (2); Rees, David (1)
Author affiliation: (1) Faculty of Advanced Technology, University of Glamorgan, CF37 1DL Pontypridd, United
Kingdom; (2) CSIS Laboratory, Chinese Academy of Sciences, Beijing 100080, China
Corresponding author: Zhao, Y.-B.(yzhao@glam.ac.uk)
Source title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
Abbreviated source title: IEEE Trans Syst Man Cybern Part B Cybern
Volume: 38
Issue: 3
Issue date: June 2008
Publication year: 2008
Pages: 700-708
Language: English
ISSN: 10834419
CODEN: ITSCFI
Document type: Journal article (JA)
Publisher: Institute of Electrical and Electronics Engineers Inc., 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ
08855-1331, United States
Abstract: In this paper, a predictive control-based approach is proposed for a Hammerstein-type system which
is closed through some form of network. The approach uses a two-step predictive controller to deal with the static
input nonlinearity of the Hammerstein system and a delay and dropout compensation scheme to compensate for the
communication constraints in a networked control environment. Theoretical results are presented for the closed-loop
stability of the system. Simulation examples illustrating the validity of the approach are also presented. © 2008 IEEE.
Number of references: 16
Main heading: Predictive control systems
Controlled terms: Closed loop control systems  -  Computer simulation  -  Control nonlinearities  -  Control system
analysis  -  Control system stability  -  Control system synthesis
Uncontrolled terms: Delay and dropout compensation scheme  -  Hammerstein system  -  Networked control systems
  -  Two-step approach
Classification code: 723.5 Computer Applications - 731.1 Control Systems - 731.4 System Stability
Treatment: Theoretical (THR)
DOI: 10.1109/TSMCB.2008.918572
Database: Compendex
Compilation and indexing terms, Copyright 2017 Elsevier Inc.
Data Provider: Engineering Village

http://www.engineeringvillage.com

